First Order Linear Differential Systems with Singularities

Joelle Saadé
MATHIS - XLIM - Université de Limoges

14 December 2017

Workshop Doctorants XLIM 2017

- Phenomena of nature which involve movements can be mathematically modeled by differential equations.
- Often these equations are not linear.

For example, the simple pendulum given by:

$$
\theta^{\prime \prime}(t)=-\frac{g}{\ell} \sin (\theta(t))
$$

For small oscillations:
$\sin (\theta(t)) \sim \theta(t)$

- Phenomena of nature which involve movements can be mathematically modeled by differential equations.
- Often these equations are not linear.

For example, the simple pendulum given by:

$$
\theta^{\prime \prime}(t)=-\frac{g}{\ell} \sin (\theta(t))
$$

For small oscillations:
$\sin (\theta(t)) \sim \theta(t)$

\hookrightarrow For small variation, non-linear phenomena can be seen locally as linear.

Context

We treat linear systems of the form:

$$
[A]: Y^{\prime}=A(x) Y
$$

- A has coefficients in $\mathcal{C}((x))$:

$$
A(x)=\frac{1}{x^{q+1}}\left(A_{0}+A_{1} x+\ldots\right)
$$

- Y is an n dimensional vector in a field extension of $\mathcal{C}((x))$.
- $q>1$

Context

We treat linear systems of the form:

$$
[A]: Y^{\prime}=A(x) Y
$$

- A has coefficients in $\mathcal{C}((x))$:

$$
A(x)=\frac{1}{x^{q+1}}\left(A_{0}+A_{1} x+\ldots\right) .
$$

- Y is an n dimensional vector in a field extension of $\mathcal{C}((x))$.
- $q>1$

Objectif

- Local resolution in an irregular singularity at $x=0$.
- Symbolic resolution.
- No numeric approximation.
- Proceed efficiently and accurately.

Context

We treat linear systems of the form:

$$
[A]: Y^{\prime}=A(x) Y
$$

- A has coefficients in $\mathcal{C}((x))$:

$$
A(x)=\frac{1}{x^{q+1}}\left(A_{0}+A_{1} x+\ldots\right)
$$

- Y is an n dimensional vector in a field extension of $\mathcal{C}((x))$.
- $q>1$

Objectif

- Local resolution in an irregular singularity at $x=0$.
- Symbolic resolution.
- No numeric approximation.
- Proceed efficiently and accurately.

Strategy: get a refined structure

- First step: Maximal decomposition.

- Second step: each little block
(1) has one type of irregularity.
(2) we find theoretically the degree r of the field extension $\mathcal{C}\left(\left(x^{1 / r}\right)\right)$.
- Third step: we continue using classical tools.

Results

- New algorithm for formal reduction with advantages:
- Reduce computation costs by computing in the smallest necessary field extensions.
- Certified computation.
- A maple package containing all functions of the algorithm.

Thank you!

