Example V1-6 :  This is a case where we have one ramification of degree2 2x2 (mu=1,d=1,r=2) 

 

> A := rtable(1 .. 2, 1 .. 2, [[`/`(1, `*`(`^`(x, 4))), `/`(1, `*`(`^`(x, 5)))], [`/`(1, `*`(`^`(x, 6))), `/`(1, `*`(`^`(x, 4)))]], subtype = Matrix); -1
 

> Exp_part(A, x, t); 1
 

 

 

 

 

 

 

 

 

 

 

[Matrix(%id = 18446744078318384470), `*`(`^`(`+`(lambda, `-`(9)), 2))]
The first few terms of the transformation P in C((x)):
List of subsystem up to conjugaison after a first maximal Decomposition in C((x)):
dim of the eigenring
List of ramification of each subsystem:
We apply the  ramification and do elementary tranformations.
List of eigenvalue of A0:
List of exponential parts of the system
[`+`(`/`(1, `*`(`^`(t, 11))), `/`(1, `*`(`^`(t, 8))), `-`(`/`(`*`(`/`(1, 4)), `*`(`^`(t, 2))))), x = `*`(`^`(t, 2))] (12.1)
 

>
 

>
 

>