Example V1-8 : This is a case where we have one ramification of degree3 3x3 (mu=1,d=1,r=3). 

 

> A := rtable(1 .. 3, 1 .. 3, [[`+`(`-`(`/`(`*`(4), `*`(`^`(x, 5))))), `/`(1, `*`(`^`(x, 4))), `+`(`/`(`*`(`/`(1, 3)), `*`(`^`(x, 3))))], [`+`(`/`(`*`(`/`(1, 3)), `*`(`^`(x, 2)))), `+`(`/`(`*`(`/`(1, 3)...
 

 

 

 

 

 

 

 

 

 

 

 

 

[Matrix(%id = 18446744078318384926), `*`(`^`(`+`(lambda, 10), 3))]
The first few terms of the transformation P in C((x)):
List of subsystem up to conjugaison after a first maximal Decomposition in C((x)):
Matrix(%id = 18446744078318385382)
List of eigenvalue of A0:
List of exponential parts of the system
[`+`(`/`(1, `*`(`^`(t, 11))), `/`(`*`(`/`(1, 3)), `*`(`^`(t, 7))), `-`(`/`(`*`(4), `*`(`^`(t, 15))))), x = `*`(`^`(t, 3))] (14.1)
 

>