Example v1-10 :(mu=1,d=2,r=2) 

 

> A := rtable(1 .. 4, 1 .. 4, [[`/`(1, `*`(`^`(x, 5))), `+`(`/`(`*`(`/`(1, 3)), `*`(`^`(x, 8)))), `/`(1, `*`(`^`(x, 3))), `+`(`/`(`*`(`/`(1, 3)), `*`(`^`(x, 6))))], [`+`(`/`(`*`(`/`(1, 3)), `*`(`^`(x, 7...
 

> Exp_part(A, x, t)
 

 

 

 

 

 

 

 

 

 

 

[rtable(1 .. 4, 1 .. 4, [[`+`(14, `-`(`*`(`/`(18, 5), `*`(`^`(x, 2)))), O(`*`(`^`(x, 4)))), O(`*`(`^`(x, 6))), O(`*`(`^`(x, 7))), `+`(6, `-`(`*`(`/`(6, 5), `*`(`^`(x, 2)))), O(`*`(`^`(x, 4))))], [O(`*...
The first few terms of the transformation P in C((x)):
The first few terms of the transformation P in C((x)):
The first few terms of the transformation P in C((x)):
The first few terms of the transformation P in C((x)):
The first few terms of the transformation P in C((x)):
List of subsystem up to conjugaison after a first maximal Decomposition in C((x)):
List of subsystem up to conjugaison after a first maximal Decomposition in C((x)):
List of subsystem up to conjugaison after a first maximal Decomposition in C((x)):
List of subsystem up to conjugaison after a first maximal Decomposition in C((x)):
List of subsystem up to conjugaison after a first maximal Decomposition in C((x)):
List of subsystem up to conjugaison after a first maximal Decomposition in C((x)):
List of subsystem up to conjugaison after a first maximal Decomposition in C((x)):
List of subsystem up to conjugaison after a first maximal Decomposition in C((x)):
dim of the eigenring
List of ramification of each subsystem:
We apply the  ramification and do elementary tranformations.
List of eigenvalue of A0:
List of exponential parts of the system
[`+`(`/`(`*`(`/`(1, 18), `*`(RootOf(`+`(`*`(`^`(_Z, 2)), `-`(`*`(22, `*`(_Z))), 76)))), `*`(`^`(t, 15))), `-`(`/`(`*`(`/`(4, 9)), `*`(`^`(t, 15)))), `-`(`/`(`*`(`/`(1, 3)), `*`(`^`(t, 12)))), `/`(`*`(...
[`+`(`/`(`*`(`/`(1, 18), `*`(RootOf(`+`(`*`(`^`(_Z, 2)), `-`(`*`(22, `*`(_Z))), 76)))), `*`(`^`(t, 15))), `-`(`/`(`*`(`/`(4, 9)), `*`(`^`(t, 15)))), `-`(`/`(`*`(`/`(1, 3)), `*`(`^`(t, 12)))), `/`(`*`(...
[`+`(`/`(`*`(`/`(1, 18), `*`(RootOf(`+`(`*`(`^`(_Z, 2)), `-`(`*`(22, `*`(_Z))), 76)))), `*`(`^`(t, 15))), `-`(`/`(`*`(`/`(4, 9)), `*`(`^`(t, 15)))), `-`(`/`(`*`(`/`(1, 3)), `*`(`^`(t, 12)))), `/`(`*`(...
[`+`(`/`(`*`(`/`(1, 18), `*`(RootOf(`+`(`*`(`^`(_Z, 2)), `-`(`*`(22, `*`(_Z))), 76)))), `*`(`^`(t, 15))), `-`(`/`(`*`(`/`(4, 9)), `*`(`^`(t, 15)))), `-`(`/`(`*`(`/`(1, 3)), `*`(`^`(t, 12)))), `/`(`*`(...
[`+`(`/`(`*`(`/`(1, 18), `*`(RootOf(`+`(`*`(`^`(_Z, 2)), `-`(`*`(22, `*`(_Z))), 76)))), `*`(`^`(t, 15))), `-`(`/`(`*`(`/`(4, 9)), `*`(`^`(t, 15)))), `-`(`/`(`*`(`/`(1, 3)), `*`(`^`(t, 12)))), `/`(`*`(...
(16.1)
 

>