Example V2-2 :  This is a case where the exponential parts are copies 2x2 (mu=2, d=1, r=1). 

 

> A := rtable(1 .. 2, 1 .. 2, [[`+`(`/`(1, `*`(`^`(x, 5))), `/`(`*`(2), `*`(x))), `+`(`-`(x))], [x, `+`(`/`(1, `*`(`^`(x, 5))), `/`(`*`(3), `*`(x)))]], subtype = Matrix); -1; Exp_parts(A, x, t); 1
 

 

 

 

 

 

 

 

[Matrix(%id = 18446744078322835606), `+`(`*`(`^`(lambda, 2)), `-`(`*`(11, `*`(lambda))), 37)]
The first few terms in the transformation P in Q((x)):
List of subsystems after a first Decomposition in Q((x)):
A multiple of the ramification of each sub system:
We do elementary tranformations and apply the  ramification when necessary.
[`+`(`/`(1, `*`(`^`(t, 5))), `/`(`*`(3), `*`(t))), x = t] (18.1)
 

>