Example V2-7: This is a case where we have two copies of conjuguates exponential parts by the action x-t^2=0 (mu=2,d=1,r=1) 

 

> A := rtable(1 .. 4, 1 .. 4, [[`+`(`/`(`*`(2), `*`(`^`(x, 3))), `-`(`/`(1, `*`(`^`(x, 2))))), `+`(`-`(`/`(1, `*`(`^`(x, 6)))), `/`(1, `*`(`^`(x, 5))), `/`(`*`(2), `*`(`^`(x, 4))), `-`(`/`(1, `*`(`^`(x,...
 

 

 

 

 

 

 

 

[Matrix(%id = 18446744078322838494), `*`(`^`(`+`(`*`(`^`(lambda, 2)), lambda, 214), 2))]
The first few terms in the transformation P in Q((x)):
List of subsystems after a first Decomposition in Q((x)):
A multiple of the ramification of each sub system:
We do elementary tranformations and apply the  ramification when necessary.
[`+`(`/`(1, `*`(`^`(t, 7))), `/`(1, `*`(`^`(t, 6))), `-`(`/`(`*`(`/`(3, 4)), `*`(`^`(t, 2))))), x = `*`(`^`(t, 2))] (23.1)
 

>