Example V2-9: (mu=1,d=1,r=1)+(mu=1,d=1,r=2)+(mu=1,d=2,r=3) 

 

> A := rtable(1 .. 6, 1 .. 6, [[`+`(`/`(1, `*`(`^`(x, 5))), `/`(1, `*`(`^`(x, 3)))), 0, `+`(`/`(1, `*`(`^`(x, 5))), `-`(`/`(1, `*`(`^`(x, 4)))), `/`(1, `*`(`^`(x, 3)))), `+`(`-`(`/`(1, `*`(x)))), `/`(1,...
 

> Exp_parts(A, x, t); 1
 

 

 

 

 

 

 

 

[Matrix(%id = 18446744078322839550), `*`(`+`(lambda, 5), `*`(`^`(`+`(lambda, 20), 2), `*`(`^`(`+`(lambda, 13), 3))))]
[Matrix(%id = 18446744078322839550), `*`(`+`(lambda, 5), `*`(`^`(`+`(lambda, 20), 2), `*`(`^`(`+`(lambda, 13), 3))))]
[Matrix(%id = 18446744078322839550), `*`(`+`(lambda, 5), `*`(`^`(`+`(lambda, 20), 2), `*`(`^`(`+`(lambda, 13), 3))))]
[Matrix(%id = 18446744078322839550), `*`(`+`(lambda, 5), `*`(`^`(`+`(lambda, 20), 2), `*`(`^`(`+`(lambda, 13), 3))))]
[Matrix(%id = 18446744078322839550), `*`(`+`(lambda, 5), `*`(`^`(`+`(lambda, 20), 2), `*`(`^`(`+`(lambda, 13), 3))))]
[Matrix(%id = 18446744078322839550), `*`(`+`(lambda, 5), `*`(`^`(`+`(lambda, 20), 2), `*`(`^`(`+`(lambda, 13), 3))))]
[Matrix(%id = 18446744078322839550), `*`(`+`(lambda, 5), `*`(`^`(`+`(lambda, 20), 2), `*`(`^`(`+`(lambda, 13), 3))))]
[Matrix(%id = 18446744078322839550), `*`(`+`(lambda, 5), `*`(`^`(`+`(lambda, 20), 2), `*`(`^`(`+`(lambda, 13), 3))))]
The first few terms in the transformation P in Q((x)):
The first few terms in the transformation P in Q((x)):
List of subsystems after a first Decomposition in Q((x)):
List of subsystems after a first Decomposition in Q((x)):
A multiple of the ramification of each sub system:
We do elementary tranformations and apply the  ramification when necessary.
[`+`(`/`(1, `*`(`^`(t, 15))), `/`(1, `*`(`^`(t, 11))), `/`(`*`(`/`(2, 3)), `*`(`^`(t, 4))), `-`(`/`(`*`(`/`(2, 3)), `*`(`^`(t, 3))))), x = `*`(`^`(t, 3))], [`+`(`/`(1, `*`(`^`(t, 8))), `/`(1, `*`(`^`(... (25.1)
 

>