Example 2 (ex. 11 in paper)  

 

> read
 

> A := rtable(1 .. 2, 1 .. 2, [[`/`(1, `*`(`^`(x, 5))), `/`(1, `*`(`^`(x, 5)))], [`/`(1, `*`(`^`(x, 5))), `/`(1, `*`(`^`(x, 4)))]], subtype = Matrix); -1; Exp_part(A, x, t); 1
 

 

 

 

 

 

 

 

 

 

[rtable(1 .. 2, 1 .. 2, [[`+`(`-`(12), `*`(`/`(18, 5), `*`(x)), `*`(`/`(27, 25), `*`(`^`(x, 2))), O(`*`(`^`(x, 4)))), `+`(`-`(9), `-`(`*`(`/`(9, 5), `*`(x))), `*`(`/`(9, 25), `*`(`^`(x, 2))), O(`*`(`^...
The first few terms of the transformation P in C((x)):
The first few terms of the transformation P in C((x)):
The first few terms of the transformation P in C((x)):
The first few terms of the transformation P in C((x)):
List of subsystem up to conjugaison after a first maximal Decomposition in C((x)):
List of subsystem up to conjugaison after a first maximal Decomposition in C((x)):
List of subsystem up to conjugaison after a first maximal Decomposition in C((x)):
List of subsystem up to conjugaison after a first maximal Decomposition in C((x)):
[rtable(1 .. 1, 1 .. 1, [[`+`(`/`(`*`(`+`(`-`(`/`(1, 3)), `-`(`*`(`/`(1, 9), `*`(RootOf(`+`(`*`(`^`(_Z, 2)), `*`(15, `*`(_Z)), `-`(45)))))))), `*`(`^`(t, 5))), `/`(`*`(`+`(`/`(2, 3), `*`(`/`(1, 45), `...
[rtable(1 .. 1, 1 .. 1, [[`+`(`/`(`*`(`+`(`-`(`/`(1, 3)), `-`(`*`(`/`(1, 9), `*`(RootOf(`+`(`*`(`^`(_Z, 2)), `*`(15, `*`(_Z)), `-`(45)))))))), `*`(`^`(t, 5))), `/`(`*`(`+`(`/`(2, 3), `*`(`/`(1, 45), `...
(2.1)