Example 4 (ex. 15 and 16 in paper)  New version 1 and 2 

 

> A := rtable(1 .. 9, 1 .. 9, [[`+`(`/`(1, `*`(`^`(x, 4))), `-`(`/`(1, `*`(x)))), `+`(`-`(`/`(`*`(`/`(1, 3)), `*`(`^`(x, 2))))), `+`(`/`(1, `*`(`^`(x, 4))), `-`(`/`(`*`(`/`(1, 3)), `*`(`^`(x, 2)))), `-`...
A := rtable(1 .. 9, 1 .. 9, [[`+`(`/`(1, `*`(`^`(x, 4))), `-`(`/`(1, `*`(x)))), `+`(`-`(`/`(`*`(`/`(1, 3)), `*`(`^`(x, 2))))), `+`(`/`(1, `*`(`^`(x, 4))), `-`(`/`(`*`(`/`(1, 3)), `*`(`^`(x, 2)))), `-`...
A := rtable(1 .. 9, 1 .. 9, [[`+`(`/`(1, `*`(`^`(x, 4))), `-`(`/`(1, `*`(x)))), `+`(`-`(`/`(`*`(`/`(1, 3)), `*`(`^`(x, 2))))), `+`(`/`(1, `*`(`^`(x, 4))), `-`(`/`(`*`(`/`(1, 3)), `*`(`^`(x, 2)))), `-`...
A := rtable(1 .. 9, 1 .. 9, [[`+`(`/`(1, `*`(`^`(x, 4))), `-`(`/`(1, `*`(x)))), `+`(`-`(`/`(`*`(`/`(1, 3)), `*`(`^`(x, 2))))), `+`(`/`(1, `*`(`^`(x, 4))), `-`(`/`(`*`(`/`(1, 3)), `*`(`^`(x, 2)))), `-`...
A := rtable(1 .. 9, 1 .. 9, [[`+`(`/`(1, `*`(`^`(x, 4))), `-`(`/`(1, `*`(x)))), `+`(`-`(`/`(`*`(`/`(1, 3)), `*`(`^`(x, 2))))), `+`(`/`(1, `*`(`^`(x, 4))), `-`(`/`(`*`(`/`(1, 3)), `*`(`^`(x, 2)))), `-`...
A := rtable(1 .. 9, 1 .. 9, [[`+`(`/`(1, `*`(`^`(x, 4))), `-`(`/`(1, `*`(x)))), `+`(`-`(`/`(`*`(`/`(1, 3)), `*`(`^`(x, 2))))), `+`(`/`(1, `*`(`^`(x, 4))), `-`(`/`(`*`(`/`(1, 3)), `*`(`^`(x, 2)))), `-`...
A := rtable(1 .. 9, 1 .. 9, [[`+`(`/`(1, `*`(`^`(x, 4))), `-`(`/`(1, `*`(x)))), `+`(`-`(`/`(`*`(`/`(1, 3)), `*`(`^`(x, 2))))), `+`(`/`(1, `*`(`^`(x, 4))), `-`(`/`(`*`(`/`(1, 3)), `*`(`^`(x, 2)))), `-`...
A := rtable(1 .. 9, 1 .. 9, [[`+`(`/`(1, `*`(`^`(x, 4))), `-`(`/`(1, `*`(x)))), `+`(`-`(`/`(`*`(`/`(1, 3)), `*`(`^`(x, 2))))), `+`(`/`(1, `*`(`^`(x, 4))), `-`(`/`(`*`(`/`(1, 3)), `*`(`^`(x, 2)))), `-`...
A := rtable(1 .. 9, 1 .. 9, [[`+`(`/`(1, `*`(`^`(x, 4))), `-`(`/`(1, `*`(x)))), `+`(`-`(`/`(`*`(`/`(1, 3)), `*`(`^`(x, 2))))), `+`(`/`(1, `*`(`^`(x, 4))), `-`(`/`(`*`(`/`(1, 3)), `*`(`^`(x, 2)))), `-`...
A := rtable(1 .. 9, 1 .. 9, [[`+`(`/`(1, `*`(`^`(x, 4))), `-`(`/`(1, `*`(x)))), `+`(`-`(`/`(`*`(`/`(1, 3)), `*`(`^`(x, 2))))), `+`(`/`(1, `*`(`^`(x, 4))), `-`(`/`(`*`(`/`(1, 3)), `*`(`^`(x, 2)))), `-`...
 

> read
 

> libname :=
 

> read
 

> read
 

>
 

Version 1 (ex 15 in paper) 

 

> v := Get_Valuation(A, x); 1; A0 := map(coeff, A, x, v); 1; Eigenvalues(A0); 1
 

 

 

v := -4
A0 := rtable(1 .. 9, 1 .. 9, [[1, 0, 1, -1, 0, 0, 0, 1, 1], [-1, 1, -1, 0, 0, 0, 1, 0, -1], [0, 0, 0, 0, 0, 0, 0, 0, 0], [-1, 0, -1, 1, 0, 0, 0, -1, -1], [1, 0, 0, 1, 0, 0, 0, 0, 0], [1, -1, 1, 0, 0, ...
rtable(1 .. 9, [1, 1, 0, 0, 0, 0, 0, 0, 0], subtype = Vector[column]) (4.1.1)
 

> A2, A1 := SplittingLemma(A, x, 7, 15)
 

 

 

 

{rtable(1 .. 9, [-1, 0, 0, 0, 0, 0, 0, 1, 0], subtype = Vector[column]), rtable(1 .. 9, [0, -1, 0, 0, 0, 0, 1, 0, 0], subtype = Vector[column]), rtable(1 .. 9, [0, 0, 0, 0, 0, 0, 0, 0, 1], subtype = V...
L
A2, A1 := rtable(1 .. 7, 1 .. 7, [[`+`(`-`(`/`(1, `*`(`^`(x, 4)))), `/`(`*`(`/`(5, 3)), `*`(x)), `/`(1, `*`(`^`(x, 2)))), `+`(`-`(`/`(1, `*`(x)))), `+`(`/`(`*`(`/`(1, 3)), `*`(x))), `+`(`/`(`*`(`/`(1,...
A2, A1 := rtable(1 .. 7, 1 .. 7, [[`+`(`-`(`/`(1, `*`(`^`(x, 4)))), `/`(`*`(`/`(5, 3)), `*`(x)), `/`(1, `*`(`^`(x, 2)))), `+`(`-`(`/`(1, `*`(x)))), `+`(`/`(`*`(`/`(1, 3)), `*`(x))), `+`(`/`(`*`(`/`(1,...
A2, A1 := rtable(1 .. 7, 1 .. 7, [[`+`(`-`(`/`(1, `*`(`^`(x, 4)))), `/`(`*`(`/`(5, 3)), `*`(x)), `/`(1, `*`(`^`(x, 2)))), `+`(`-`(`/`(1, `*`(x)))), `+`(`/`(`*`(`/`(1, 3)), `*`(x))), `+`(`/`(`*`(`/`(1,...
A2, A1 := rtable(1 .. 7, 1 .. 7, [[`+`(`-`(`/`(1, `*`(`^`(x, 4)))), `/`(`*`(`/`(5, 3)), `*`(x)), `/`(1, `*`(`^`(x, 2)))), `+`(`-`(`/`(1, `*`(x)))), `+`(`/`(`*`(`/`(1, 3)), `*`(x))), `+`(`/`(`*`(`/`(1,...
A2, A1 := rtable(1 .. 7, 1 .. 7, [[`+`(`-`(`/`(1, `*`(`^`(x, 4)))), `/`(`*`(`/`(5, 3)), `*`(x)), `/`(1, `*`(`^`(x, 2)))), `+`(`-`(`/`(1, `*`(x)))), `+`(`/`(`*`(`/`(1, 3)), `*`(x))), `+`(`/`(`*`(`/`(1,...
A2, A1 := rtable(1 .. 7, 1 .. 7, [[`+`(`-`(`/`(1, `*`(`^`(x, 4)))), `/`(`*`(`/`(5, 3)), `*`(x)), `/`(1, `*`(`^`(x, 2)))), `+`(`-`(`/`(1, `*`(x)))), `+`(`/`(`*`(`/`(1, 3)), `*`(x))), `+`(`/`(`*`(`/`(1,...
A2, A1 := rtable(1 .. 7, 1 .. 7, [[`+`(`-`(`/`(1, `*`(`^`(x, 4)))), `/`(`*`(`/`(5, 3)), `*`(x)), `/`(1, `*`(`^`(x, 2)))), `+`(`-`(`/`(1, `*`(x)))), `+`(`/`(`*`(`/`(1, 3)), `*`(x))), `+`(`/`(`*`(`/`(1,...
(4.1.2)
 

> A1
 

rtable(1 .. 2, 1 .. 2, [[`/`(1, `*`(`^`(x, 4))), 0], [0, `/`(1, `*`(`^`(x, 4)))]], subtype = Matrix) (4.1.3)
 

> w1 := int(`/`(1, `*`(`^`(x, 4))), x)
 

`+`(`-`(`/`(`*`(`/`(1, 3)), `*`(`^`(x, 3))))) (4.1.4)
 

> A2 := rtable(1 .. 7, 1 .. 7, [[`+`(`-`(`/`(1, `*`(`^`(x, 4)))), `/`(1, `*`(`^`(x, 2))), `/`(`*`(`/`(5, 3)), `*`(x))), `+`(`-`(`/`(1, `*`(x)))), `+`(`/`(`*`(`/`(1, 3)), `*`(x))), `+`(`/`(`*`(`/`(1, 3))...
A2 := rtable(1 .. 7, 1 .. 7, [[`+`(`-`(`/`(1, `*`(`^`(x, 4)))), `/`(1, `*`(`^`(x, 2))), `/`(`*`(`/`(5, 3)), `*`(x))), `+`(`-`(`/`(1, `*`(x)))), `+`(`/`(`*`(`/`(1, 3)), `*`(x))), `+`(`/`(`*`(`/`(1, 3))...
A2 := rtable(1 .. 7, 1 .. 7, [[`+`(`-`(`/`(1, `*`(`^`(x, 4)))), `/`(1, `*`(`^`(x, 2))), `/`(`*`(`/`(5, 3)), `*`(x))), `+`(`-`(`/`(1, `*`(x)))), `+`(`/`(`*`(`/`(1, 3)), `*`(x))), `+`(`/`(`*`(`/`(1, 3))...
A2 := rtable(1 .. 7, 1 .. 7, [[`+`(`-`(`/`(1, `*`(`^`(x, 4)))), `/`(1, `*`(`^`(x, 2))), `/`(`*`(`/`(5, 3)), `*`(x))), `+`(`-`(`/`(1, `*`(x)))), `+`(`/`(`*`(`/`(1, 3)), `*`(x))), `+`(`/`(`*`(`/`(1, 3))...
A2 := rtable(1 .. 7, 1 .. 7, [[`+`(`-`(`/`(1, `*`(`^`(x, 4)))), `/`(1, `*`(`^`(x, 2))), `/`(`*`(`/`(5, 3)), `*`(x))), `+`(`-`(`/`(1, `*`(x)))), `+`(`/`(`*`(`/`(1, 3)), `*`(x))), `+`(`/`(`*`(`/`(1, 3))...
A2 := rtable(1 .. 7, 1 .. 7, [[`+`(`-`(`/`(1, `*`(`^`(x, 4)))), `/`(1, `*`(`^`(x, 2))), `/`(`*`(`/`(5, 3)), `*`(x))), `+`(`-`(`/`(1, `*`(x)))), `+`(`/`(`*`(`/`(1, 3)), `*`(x))), `+`(`/`(`*`(`/`(1, 3))...
A2 := rtable(1 .. 7, 1 .. 7, [[`+`(`-`(`/`(1, `*`(`^`(x, 4)))), `/`(1, `*`(`^`(x, 2))), `/`(`*`(`/`(5, 3)), `*`(x))), `+`(`-`(`/`(1, `*`(x)))), `+`(`/`(`*`(`/`(1, 3)), `*`(x))), `+`(`/`(`*`(`/`(1, 3))...
 

>
 

>
 

> read
 

>
 

 

 

 

 

 

 

 

 

 

 

 

 

[Matrix(%id = 18446744078318383102), `*`(`+`(lambda, `-`(9)), `*`(`^`(`+`(lambda, `-`(5)), 6)))]
The first few terms of the transformation P in C((x)):
List of subsystem up to conjugaison after a first maximal Decomposition in C((x)):
List of subsystem up to conjugaison after a first maximal Decomposition in C((x)):
[`+`(`/`(1, `*`(`^`(t, 22))), `/`(`*`(`/`(1, 6), `*`(RootOf(`+`(`*`(`^`(_Z, 2)), `-`(12))))), `*`(`^`(t, 15))), `/`(`+`(`*`(3, `*`(`^`(t, 14))))), `/`(1, `*`(`^`(t, 12))), `-`(`*`(5, `*`(`/`(`+`(`*`(1... (4.1.5)
 

>
 

>
 

>
 

> int(subs(t = `*`(`^`(x, `/`(1, 6))), `+`(`/`(1, `*`(`^`(t, 22))), `/`(`*`(`/`(1, 6), `*`(RootOf(`+`(`*`(`^`(_Z, 2)), `-`(12))))), `*`(`^`(t, 15))), `/`(`+`(`*`(3, `*`(`^`(t, 14))))), `/`(1, `*`(`^`(t,...
 

`+`(`-`(`/`(`*`(`/`(3, 8)), `*`(`^`(x, `/`(8, 3))))), `-`(`/`(`*`(`/`(1, 9), `*`(RootOf(`+`(`*`(`^`(_Z, 2)), `-`(12))))), `*`(`^`(x, `/`(3, 2))))), `-`(`/`(`*`(`/`(1, 4)), `*`(`^`(x, `/`(4, 3))))), `-... (4.1.6)
 

>
 

> w2 := subs(t = x, int(`+`(`/`(`*`(2), `*`(`^`(t, 3)))), t)); 1
 

`+`(`-`(`/`(1, `*`(`^`(x, 2))))) (4.1.7)
 

> w3 := `+`(`-`(`*`(3, `*`(`/`(`+`(`*`(8, `*`(`^`(x, `/`(8, 3))))))))), `-`(`/`(`*`(`/`(1, 9), `*`(RootOf(`+`(`*`(`^`(_Z, 2)), `-`(12))))), `*`(`^`(x, `/`(3, 2))))), `-`(`/`(`+`(`*`(4, `*`(`^`(x, `/`(4,...
 

`+`(`-`(`/`(`*`(`/`(3, 8)), `*`(`^`(x, `/`(8, 3))))), `-`(`/`(`*`(`/`(1, 9), `*`(RootOf(`+`(`*`(`^`(_Z, 2)), `-`(12))))), `*`(`^`(x, `/`(3, 2))))), `-`(`/`(`*`(`/`(1, 4)), `*`(`^`(x, `/`(4, 3))))), `-... (4.1.8)
 

>
 

Version 2 (ex 16 in paper) 

 

> AA2 := rtable(1 .. 6, 1 .. 6, [[`+`(`/`(1, `*`(`^`(x, 2))), `-`(`/`(`*`(`/`(1, 3)), `*`(x)))), `+`(`-`(`/`(`*`(`/`(1, 3)), `*`(`^`(x, 2)))), `/`(`*`(`/`(1, 3)), `*`(x))), `+`(`/`(`*`(`/`(1, 3)), `*`(`...
AA2 := rtable(1 .. 6, 1 .. 6, [[`+`(`/`(1, `*`(`^`(x, 2))), `-`(`/`(`*`(`/`(1, 3)), `*`(x)))), `+`(`-`(`/`(`*`(`/`(1, 3)), `*`(`^`(x, 2)))), `/`(`*`(`/`(1, 3)), `*`(x))), `+`(`/`(`*`(`/`(1, 3)), `*`(`...
 

>
 

> v := Get_Valuation(AA2, x)
 

-4 (4.2.1)
 

> A0 := map(coeff, AA2, x, -4); 1; Eigenvalues(A0); 1; r0 := Rank(A0); 1
 

 

 

A0 := rtable(1 .. 6, 1 .. 6, [[0, 0, 0, 0, 1, -1], [-1, 0, 0, 0, 0, 1], [0, 1, 0, 0, 0, 1], [-1, 0, 0, 0, 1, 0], [0, 0, 0, 0, 1, -1], [0, 0, 0, 1, 1, -1]], subtype = Matrix)
rtable(1 .. 6, [0, 0, 0, 0, 0, 0], subtype = Vector[column])
4 (4.2.2)
 

>
 

> kappa := `+`(`+`(3, -1), `*`(4, `/`(1, 6)))
 

`/`(8, 3) (4.2.3)
 

> A := `+`(`*`(3, `*`(c, `*`(`^`(t, 2), `*`(subs(x = `*`(c, `*`(`^`(t, 3))), AA2)))))); -1
 

> A := super_reduce(convert(A, polynom), t, t, u, 'T1', 'invT1')[1]; 1; v := Get_Valuation(A, t)
 

 

A := rtable(1 .. 6, 1 .. 6, [[`+`(`/`(`*`(2), `*`(c, `*`(`^`(t, 4))))), `+`(`-`(`/`(`*`(3), `*`(`^`(t, 2))))), `+`(`-`(`/`(`*`(3), `*`(`^`(t, 9), `*`(`^`(c, 2)))))), 0, `+`(`-`(`/`(`*`(3), `*`(`^`(t, ...
-9 (4.2.4)
 

>
 

> A0 := map(coeff, A, t, v); 1
 

A0 := rtable(1 .. 6, 1 .. 6, [[0, 0, `+`(`-`(`/`(`*`(3), `*`(`^`(c, 2))))), 0, `+`(`-`(`/`(`*`(3), `*`(`^`(c, 2))))), 0], [`+`(`-`(`/`(`*`(3), `*`(`^`(c, 3))))), 0, 0, `+`(`/`(`*`(3), `*`(`^`(c, 2))))... (4.2.5)
 

> chi := CharacteristicPolynomial(A0, lambda)
 

`+`(`*`(`^`(lambda, 6)), `-`(`/`(`*`(54, `*`(`^`(lambda, 3))), `*`(`^`(c, 8)))), `/`(`*`(729), `*`(`^`(c, 16)))) (4.2.6)
 

> NewtonPolynom := subs(lambda = `+`(`*`(3, `*`(lambda))), c = 1, %); 1; solve(%)
 

 

`+`(`*`(729, `*`(`^`(lambda, 6))), `-`(`*`(1458, `*`(`^`(lambda, 3)))), 729)
1, `+`(`-`(`/`(1, 2)), `-`(`*`(`+`(`*`(`/`(1, 2), `*`(I))), `*`(`^`(3, `/`(1, 2)))))), `+`(`-`(`/`(1, 2)), `*`(`*`(`/`(1, 2), `*`(I)), `*`(`^`(3, `/`(1, 2))))), 1, `+`(`-`(`/`(1, 2)), `-`(`*`(`+`(`*`(... (4.2.7)
 

> NewtonReduce := subs(lambda = `*`(`^`(lambda, `/`(1, 3))), NewtonPolynom); 1; solve(%); 1
 

 

`+`(`*`(729, `*`(`^`(lambda, 2))), `-`(`*`(1458, `*`(lambda))), 729)
1, 1 (4.2.8)
 

>
 

> A := subs(c = 1, A); -1; chi := subs(c = 1, chi); 1; solve(chi); 1
 

 

`+`(`*`(`^`(lambda, 6)), `-`(`*`(54, `*`(`^`(lambda, 3)))), 729)
3, `+`(`-`(`/`(3, 2)), `-`(`*`(`+`(`*`(`/`(3, 2), `*`(I))), `*`(`^`(3, `/`(1, 2)))))), `+`(`-`(`/`(3, 2)), `*`(`*`(`/`(3, 2), `*`(I)), `*`(`^`(3, `/`(1, 2))))), 3, `+`(`-`(`/`(3, 2)), `-`(`*`(`+`(`*`(... (4.2.9)
 

>
 

>
 

> M := `+`(A, `-`(`/`(`*`(3, `*`(IdentityMatrix(6))), `*`(`^`(t, 9))))); -1; M := super_reduce(convert(M, polynom), t, t, u, 'T1', 'invT1')[1]; -1
 

> A0 := map(coeff, M, t, -9); 1
 

A0 := rtable(1 .. 6, 1 .. 6, [[-6, 0, -3, 0, 0, 0], [-5, -6, 0, 3, 0, 0], [3, 0, -3, 0, 0, 0], [-4, -3, -3, -3, 0, 0], [-3, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]], subtype = Matrix) (4.2.10)
 

> CharacteristicPolynomial(A0, lambda)
 

`+`(`*`(`^`(lambda, 6)), `*`(18, `*`(`^`(lambda, 5))), `*`(135, `*`(`^`(lambda, 4))), `*`(486, `*`(`^`(lambda, 3))), `*`(729, `*`(`^`(lambda, 2)))) (4.2.11)
 

> solve(%)
 

0, 0, `+`(`-`(`/`(9, 2)), `-`(`*`(`+`(`*`(`/`(3, 2), `*`(I))), `*`(`^`(3, `/`(1, 2)))))), `+`(`-`(`/`(9, 2)), `*`(`*`(`/`(3, 2), `*`(I)), `*`(`^`(3, `/`(1, 2))))), `+`(`-`(`/`(9, 2)), `-`(`*`(`+`(`*`(... (4.2.12)
 

>
 

> SplittingLemma1(M, t, 2, 0, 10); -1
 

 

 

rtable(1 .. 6, 1 .. 6, [[-6, 0, -3, 0, 0, 0], [-5, -6, 0, 3, 0, 0], [3, 0, -3, 0, 0, 0], [-4, -3, -3, -3, 0, 0], [-3, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]], subtype = Matrix)
L (4.2.13)
 

> AA := map(convert, %[1], polynom); 1
 

AA := rtable(1 .. 2, 1 .. 2, [[`+`(`/`(1, `*`(`^`(t, 5))), `/`(`*`(3), `*`(`^`(t, 4))), `/`(`*`(3), `*`(`^`(t, 2))), `/`(`*`(4), `*`(t))), `+`(`/`(1, `*`(`^`(t, 6))), `-`(`/`(1, `*`(`^`(t, 5)))), `/`(... (4.2.14)
 

> AA := rtable(1 .. 2, 1 .. 2, [[`+`(`/`(1, `*`(`^`(t, 5))), `/`(`*`(3), `*`(`^`(t, 4))), `/`(`*`(3), `*`(`^`(t, 2))), `/`(`*`(4), `*`(t))), `+`(`/`(1, `*`(`^`(t, 6))), `-`(`/`(1, `*`(`^`(t, 5)))), `/`(...
 

>
 

> v := Get_Valuation(AA, t)
 

-6 (4.2.15)
 

> A0 := map(coeff, AA, t, -6); 1; Eigenvalues(A0); 1; r0 := Rank(A0); 1
 

 

 

A0 := rtable(1 .. 2, 1 .. 2, [[0, 1], [0, 0]], subtype = Matrix)
rtable(1 .. 2, [0, 0], subtype = Vector[column])
1 (4.2.16)
 

>
 

> kappa := `+`(`+`(5, -1), `/`(1, 2)); 1
 

`/`(9, 2) (4.2.17)
 

> A := `+`(`*`(2, `*`(c, `*`(z, `*`(subs(t = `*`(c, `*`(`^`(z, 2))), AA)))))); -1
 

> A := super_reduce(convert(A, polynom), z, z, u, 'T1', 'invT1')[1]; 1; v := Get_Valuation(A, z)
 

 

A := rtable(1 .. 2, 1 .. 2, [[`/`(`*`(`+`(`*`(2, `*`(`^`(c, 5), `*`(`^`(z, 10)))), `-`(`*`(13, `*`(`^`(c, 4), `*`(`^`(z, 8))))), `-`(`*`(6, `*`(`^`(c, 3), `*`(`^`(z, 6))))), `*`(6, `*`(c, `*`(`^`(z, 2...
-10 (4.2.18)
 

>
 

> A0 := map(coeff, A, z, v); 1
 

A0 := rtable(1 .. 2, 1 .. 2, [[0, `+`(`/`(`*`(6), `*`(`^`(c, 4))))], [`+`(`/`(`*`(2), `*`(`^`(c, 5)))), 0]], subtype = Matrix) (4.2.19)
 

> chi := CharacteristicPolynomial(A0, lambda)
 

`+`(`*`(`^`(lambda, 2)), `-`(`/`(`*`(12), `*`(`^`(c, 9))))) (4.2.20)
 

> NewtonPolynom := subs(lambda = `+`(`*`(2, `*`(lambda))), c = 1, %); 1; solve(%)
 

 

`+`(`*`(4, `*`(`^`(lambda, 2))), `-`(12))
`*`(`^`(3, `/`(1, 2))), `+`(`-`(`*`(`^`(3, `/`(1, 2))))) (4.2.21)
 

> NewtonReduce := subs(lambda = `*`(`^`(lambda, `/`(1, 2))), NewtonPolynom)
 

`+`(`*`(4, `*`(lambda)), `-`(12)) (4.2.22)
 

> solve(%); 1
 

3 (4.2.23)
 

> `+`(9, `-`(`*`(2, 4))) = 1; -1
 

>
 

> A := subs(c = 3, A); -1; chi := subs(c = 3, chi); 1; solve(chi); 1
 

 

`+`(`*`(`^`(lambda, 2)), `-`(`/`(4, 6561)))
`/`(2, 81), -`/`(2, 81) (4.2.24)
 

>
 

> M := `+`(A, `-`(`/`(`*`(`/`(2, 81), `*`(IdentityMatrix(2))), `*`(`^`(z, 10))))); -1; M := super_reduce(convert(M, polynom), z, z, u, 'T1', 'invT1')[1]; -1
 

> A0 := map(coeff, M, z, v); 1
 

A0 := rtable(1 .. 2, 1 .. 2, [[-`/`(4, 81), 0], [`/`(2, 243), 0]], subtype = Matrix) (4.2.25)
 

 

> CharacteristicPolynomial(A0, lambda); 1
 

`+`(`*`(`^`(lambda, 2)), `*`(`/`(4, 81), `*`(lambda))) (4.2.26)
 

> solve(%); 1
 

0, -`/`(4, 81) (4.2.27)
 

>
 

> SplittingLemma1(M, z, 1, 0, 10); -1
 

 

 

rtable(1 .. 2, 1 .. 2, [[-`/`(4, 81), 0], [`/`(2, 243), 0]], subtype = Matrix)
L (4.2.28)
 

> AA := map(convert, %[1], polynom); 1
 

AA := rtable(1 .. 1, 1 .. 1, [[`+`(`/`(`*`(`/`(2, 81)), `*`(`^`(z, 9))), `/`(`*`(`/`(2, 9)), `*`(`^`(z, 7))), `-`(`/`(`*`(`/`(5, 2)), `*`(z))))]], subtype = Matrix) (4.2.29)
 

>
 

> expand(`+`(subs(t = `+`(`*`(3, `*`(`^`(z, 2)))), `+`(`/`(`*`(3, `*`(`/`(`+`(`*`(3, `*`(`^`(t, 2))))))), `*`(`^`(t, 9))))), `/`(`*`(`+`(`*`(2, `*`(`/`(`+`(`*`(81, `*`(`^`(z, 10))))))), `*`(2, `*`(`/`(`...
 

`+`(`/`(`*`(`/`(1, 177147)), `*`(`^`(z, 22))), `/`(`*`(`/`(1, 6561)), `*`(`^`(z, 15))), `/`(`*`(`/`(1, 6561)), `*`(`^`(z, 14))), `/`(`*`(`/`(1, 729)), `*`(`^`(z, 12))), `-`(`/`(`*`(`/`(5, 324)), `*`(`... (4.2.30)
 

>
 

(4.2.31)
 

> w3 := int(subs(z = simplify(`*`(`^`(`/`(1, 27), `/`(1, 6)), `*`(`^`(x, `/`(1, 6))))), `+`(`/`(`+`(`*`(177147, `*`(`^`(z, 22))))), `/`(`+`(`*`(6561, `*`(`^`(z, 15))))), `/`(`+`(`*`(6561, `*`(`^`(z, 14)...
 

`+`(`-`(`/`(`*`(`/`(3, 8)), `*`(`^`(x, `/`(8, 3))))), `-`(`/`(`*`(`/`(2, 9), `*`(`^`(3, `/`(1, 2)))), `*`(`^`(x, `/`(3, 2))))), `-`(`/`(`*`(`/`(1, 4)), `*`(`^`(x, `/`(4, 3))))), `-`(`/`(1, `*`(x)))) (4.2.32)
 

(4.2.33)