Example Version1-1 : This is a case where the exponential parts have (conjugated) algebraic coefficients 2x2 (mu=1, d=2, r=1). 

 

> A := rtable(1 .. 2, 1 .. 2, [[`/`(1, `*`(`^`(x, 5))), `/`(1, `*`(`^`(x, 5)))], [`/`(1, `*`(`^`(x, 5))), `/`(1, `*`(`^`(x, 4)))]], subtype = Matrix); -1; Exp_part(A, x, t); 1
 

 

 

 

 

 

 

 

 

 

[rtable(1 .. 2, 1 .. 2, [[`+`(`*`(`/`(6, 5), `*`(x)), `*`(`/`(9, 25), `*`(`^`(x, 2))), O(`*`(`^`(x, 4)))), `+`(`-`(3), `-`(`*`(`/`(3, 5), `*`(x))), `*`(`/`(3, 25), `*`(`^`(x, 2))), O(`*`(`^`(x, 3))))]...
The first few terms of the transformation P in C((x)):
The first few terms of the transformation P in C((x)):
The first few terms of the transformation P in C((x)):
The first few terms of the transformation P in C((x)):
List of subsystem up to conjugaison after a first maximal Decomposition in C((x)):
List of subsystem up to conjugaison after a first maximal Decomposition in C((x)):
List of subsystem up to conjugaison after a first maximal Decomposition in C((x)):
List of subsystem up to conjugaison after a first maximal Decomposition in C((x)):
[rtable(1 .. 1, 1 .. 1, [[`+`(`/`(`*`(`+`(`-`(`*`(`/`(1, 3), `*`(RootOf(`+`(`*`(`^`(_Z, 2)), `-`(`*`(3, `*`(_Z))), `-`(9)))))), 1)), `*`(`^`(t, 5))), `/`(`*`(`+`(`/`(2, 5), `*`(`/`(1, 15), `*`(RootOf(...
[rtable(1 .. 1, 1 .. 1, [[`+`(`/`(`*`(`+`(`-`(`*`(`/`(1, 3), `*`(RootOf(`+`(`*`(`^`(_Z, 2)), `-`(`*`(3, `*`(_Z))), `-`(9)))))), 1)), `*`(`^`(t, 5))), `/`(`*`(`+`(`/`(2, 5), `*`(`/`(1, 15), `*`(RootOf(...
(7.1)
 

>