Example V1-2 :  This is a case where the exponential parts are copies 2x2 (mu=2, d=1, r=1). 

 

> A := rtable(1 .. 2, 1 .. 2, [[`+`(`/`(1, `*`(`^`(x, 5))), `/`(`*`(2), `*`(x))), `+`(`-`(x))], [x, `+`(`/`(1, `*`(`^`(x, 5))), `/`(`*`(3), `*`(x)))]], subtype = Matrix); -1; Exp_part(A, x, t); 1
 

 

 

 

 

 

 

 

 

 

[Matrix(%id = 18446744078318383862), `+`(`*`(`^`(lambda, 2)), `-`(`*`(15, `*`(lambda))), `-`(2))]
The first few terms of the transformation P in C((x)):
The first few terms of the transformation P in C((x)):
List of subsystem up to conjugaison after a first maximal Decomposition in C((x)):
List of subsystem up to conjugaison after a first maximal Decomposition in C((x)):
[Matrix(%id = 18446744078318384318), x = t] (8.1)
 

>